Parabolic Systems with Coupled Boundary Conditions
نویسندگان
چکیده
We consider elliptic operators with operator-valued coefficients and discuss the associated parabolic problems. The unknowns are functions with values in a Hilbert space W . The system is equipped with a general class of coupled boundary conditions of the form f|∂Ω ∈ Y and ∂f ∂ν ∈ Y⊥, where Y is a closed subspace of L(∂Ω;W ). We discuss well-posedness and further qualitative properties, systematically reducing features of the parabolic system to operator-theoretical properties of the orthogonal projection onto Y .
منابع مشابه
Blow - up behaviors for semilinear parabolic systems coupled in equations and boundary conditions ✩
This paper concerns with blow-up behaviors for semilinear parabolic systems coupled in equations and boundary conditions in half space. We establish the rate estimates for blow-up solutions and prove that the blow-up set is ∂R+ under proper conditions on initial data. Furthermore, for N = 1, more complete conclusions about such two topics are given. 2004 Elsevier Inc. All rights reserved.
متن کاملA MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS
Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...
متن کاملVector-valued Heat Equations and Networks with Coupled Dynamic Boundary Conditions
Motivated by diffusion processes on metric graphs and ramified spaces, we consider an abstract setting for interface problems with coupled dynamic boundary conditions belonging to a quite general class. Beside well-posedness, we discuss positivity, L∞-contractivity and further invariance properties. We show that the parabolic problem with dynamic boundary conditions enjoy these properties if an...
متن کاملQualitative Properties of Coupled Parabolic Systems of Evolution Equations
We apply functional analytical and variational methods in order to study well-posedness and qualitative properties of evolution equations on product Hilbert spaces. To this aim we introduce an algebraic formalism for matrices of sesquilinear mappings. We apply our results to parabolic problems of different nature: a coupled diffusive system arising in neurobiology, a strongly damped wave equati...
متن کاملBlowup Properties for Parabolic Equations Coupled via Non-standard Growth Sources†
This paper deals with parabolic equations coupled via nonstandard growth sources, subject to homogeneous Dirichlet boundary conditions. Three kinds of necessary and sufficient conditions are obtained, which determine the complete classifications for non-simultaneous and simultaneous blowup phenomena. Moreover, blowup rates are given. AMS Mathematics Subject Classification : 35K05, 35K60, 35B40,...
متن کامل